Tampilkan postingan dengan label TURUNAN. Tampilkan semua postingan
Tampilkan postingan dengan label TURUNAN. Tampilkan semua postingan
Kumpulan Pembahasan Soal SBMPTN Differensial 3

Kumpulan Pembahasan Soal SBMPTN Differensial 3

  1. Jika garis singgung di titik (1, 2) pada parabola y = ax2 + bx + 4 memiliki persamaan y = -6x + 8, maka nilai a dan b berturut-turut adalah ....
    A. 2 dan -4
    B. -4 dan 2
    C. -2 dan 0
    D. 2 dan -10
    E. 4 dan -6

    Pembahasan :
    Untuk menentukan nilai a dan b, kita dapat menggunakan persamaan garis singgung yang diketahui.
    ⇒ y = -6x + 8

    Sesuai dengan konsep turunan, gradien garis singgung merupakan turunan pertama dari persamaan garisnya, yang secara matematis dapat ditulis :
    Gradien = m = y' = dy
    dx

    Dengan rumus tersebut, kita peroleh gradien garis singgung sebagai berikut :
    ⇒ m = dy
    dx
    ⇒ m = d(-6x + 8)
    dx
    ⇒ m = -6
    Untuk persamaan garis lurus, gradien akan sama dengan koefisien dari variabel x.

    Gradien m = -6 merupakan gradien di titik (1,2) yang sama dengan turunan pertama parabola. Sehingga :
    ⇒ -6 = d(ax2 + bx + 4)
    dx
    ⇒ -6 = 2ax + b

    Substitusi nilai x = 1 ke persamaan di atas, sehingga :
    ⇒ -6 = 2ax + b
    ⇒ -6 = 2a(1) + b
    ⇒ 2a + b = -6 ....... (1)

    Garis singgung y = -6x + 8 menyinggung parabola di titik (1, 2) maka :
    ⇒ y = ax2 + bx + 4
    ⇒ 2 = a(1)2 + b(1) + 4
    ⇒ 2 = a + b + 4
    ⇒ a + b = -2
    ⇒ a = -2 - b ...... (2)

    Substitusi persamaan (2) ke persamaan (1) :
    ⇒ 2a + b = -6
    ⇒ 2(-2 - b) + b = -6
    ⇒ -4 - 2b + b = -6
    ⇒ -b = -6 + 4
    ⇒ -b = -2
    ⇒ b = 2

    Substitusi nilai b untuk memperoleh nilai a :
    ⇒ a = -2 - b
    ⇒ a = -2 - 2
    ⇒ a = -4
    Jadi, nilai a = -4 dan b = 2.
    Jawaban : B

  2. Misalkan f '(x) menyatakan turunan pertama dari fungsi berikut :
    y = x2  , x ≠ 3
    3 - x
    Jika f '(2) dan ½ f '(4) adalah suku pertama dan kedua suatu deret geometri tak hingga, maka jumlah deret tersebut adalah .....
    A. 8D. 32
    B. 16E. 40
    C. 24

    Pembahasan :
    Untuk bentuk pembagian y = u(x)v(x) , turunan pertamanya dapat ditentukan dengan rumus berikut :
    f '(x) = u'(x).v(x) - u(x).v'(x)
    v2(x)

    Dari soal, kita misalkan :
    ⇒ u(x) = x2 maka u'(x) = 2x
    ⇒ v(x) = 3 - x maka v'(x) = -1

    Dengan rumus turunan, kita peroleh :
    ⇒ f '(x) = u'(x).v(x) - u(x).v'(x)
    v2(x)
    ⇒ f '(x) = 2x (3 - x) - x2.(-1)
    (3 - x)2
    ⇒ f '(x) = 6x - 2x2 + x2
    (3 - x)2
    ⇒ f '(x) = 6x - x2
    (3 - x)2

    Selanjutnya kita cari nilai f '(2) sebagai berikut :
    ⇒ f '(2) = 6(2) - (2)2
    (3 - 2)2
    ⇒ f '(2) = 12 - 4
    1
    ⇒ f '(2) = 8

    Dengan cara yang sama kita peroleh f '(4) sebagau berikut :
    ⇒ f '(4) = 6(4) - (4)2
    (3 - 4)2
    ⇒ f '(4) = 24 - 16
    1
    ⇒ f '(4) = 8
    Dengan begitu nilai dari ½ f '(4) = 4.

    Kita sudah peroleh suku pertama dan suku kedua deret tak hingga yaitu 8 dan 4. Itu berarti deret tersebut memiliki rasio sebesar ½. Dengan demikian, jumlah deret geometri tak hingga tersebut adalah :
    ⇒ S∞ = a
    1 - r
    ⇒ S∞ = 8
    1 - ½
    ⇒ S∞ = 8
    ½
    ⇒ S∞ = 16
    Jawaban : B

  3. Diketahui fungsi trigonometri sebagai berikut :
    w(α) = 1 - tan2 α
    2 sec2 α
    Nilai minimum dari fungsi w(α) adalah .....
    A. 0D. -2
    B. -½E. -∞
    C. -1

    Pembahasan :
    Berikut rumus & identitas trigonometri yang dapat kita manfaatkan untuk menyelesaikan soal di atas.
    tan α = sin α
    cos α
    sec α = 1
    cos α

    Bentuk fungsi pada soal di atas dapat kita sederhanakan menjadi :
    ⇒ w(α) = 1 - tan2 α
    2 sec2 α
    ⇒ w(α) = 1 - (sin2 αcos2 α)
    2cos2 α
    ⇒ w(α) = (1 − sin2 α ) x cos2 α
    cos2 α2
    ⇒ w(α) = cos2 α  − sin2 α
    22
    ⇒ w(α) = cos2 α − sin2 α
    2

    Sekarang ingat bahwa cos2 α − sin2 α = cos 2α, sehingga :
    ⇒ w(α) = ½ cos 2α 

    Karena fungsi w(α) dalam bentuk cosinus dan nilai minimum dari fungsi cosinus adalah -1, maka nilai minimum dari fungsi w(α) adalah : ½(-1) = -½.
    Jawaban : B
PEMBAHASAN SOAL SBMPTN APLIKASI TURUNAN 2

PEMBAHASAN SOAL SBMPTN APLIKASI TURUNAN 2

  1. Gradien garis singgung suatu kurva di titik (x, y) adalah 3√x. Jika kurva tersebut melalui titik (4, 9), maka persamaan garis singgung kurva ini di titik berabsis 1 adalah .....
    A. 3x - y - 1 = 0
    B. 3x - y + 4 = 0
    C. 3x - y - 4 = 0
    D. 3x - y + 8 = 0
    E. 3x - y - 8 = 0

    Pembahasan :
    Ingat konsep bahwa persamaan gradien garis singgung merupakan turunan pertama dari fungsi f(x) = y'. Karena pada soal gradiennya sudah diketahui :
    ⇒ m = 3√x
    ⇒ y' = 3√x

    Fungsi f(x) = y dapat ditentukan dengan konsep integral :
    ⇒ y = ∫ m dx
    ⇒ y = ∫ 3√x dx
    ⇒ y = 2x3/2 + c

    Karena kurvanya melalui titik (4, 9), maka substitusi nilai x = 4 dan y = 9 pada persamaannya untuk menentukan nilai c, sebagai berikut :
    ⇒ y = 2x3/2 + c
    ⇒ 9 = 2 (4)3/2 + c
    ⇒ 9 = 2 (4½ .41) + c
    ⇒ 9 = 2 (√4 .4) + c
    ⇒ 9 = 2 (8) + c
    ⇒ c = 9 - 16
    ⇒ c = -7

    Karena c = -7, maka fungsi kurvanya menjadi :
    ⇒ y = 2x3/2 + (-7)
    ⇒ y = 2x3/2 - 7

    Pada soal ditanya persamaan garis singgung kurva di titik berabsis 1, maka substitusi nilai x = 1 untuk mencari titik potongnya :
    ⇒ y = 2.(1)3/2 - 7
    ⇒ y = 2 - 7
    ⇒ y = -5
    Titik potong = (1, -5)

    Selanjutnya kita tentukan gradien garis singgung di titik (1, -5) :
    ⇒ m = 3√x
    ⇒ m = 3√1
    ⇒ m = 3

    Dengan demikian, persamaan garis singgung di titik (1, -5) adalah :
    ⇒ y - y1 = m (x - x1)
    ⇒ y - (-5) = 3 (x - 1)
    ⇒ y + 5 = 3x - 3
    ⇒ 0 = 3x - 3 - y - 5
    ⇒ 3x - y - 8 = 0
    Jawaban : E

  2. Luas sebuah lingkaran adalah sebuah fungsi dari kelilingnya. Jika keliling sebuah lingkaran adalah x, maka laju perubahan luas lingkaran terhadap kelilingnya adalah ....
    A. πxD.  xπ
    B. 2πxE.  2xπ
    C. x

    Pembahasan :
    Untuk menyelesaikan soal ini tentu kita harus mengerti rumus menentukan keliling dan luas lingkaran.
    • Rumus keliling lingkaran :
      K = 2 π.r

    • Rumus luas lingkaran :
      L = π.r2

    Karena luas lingkaran dinyatakan sebagai fungsi keliling, maka kedua rumus di atas harus dihubungkan sebagai berikut :
    ⇒ K = 2 π.r
    ⇒ r = K

    Substitusi r ke persamaan luas, sehingga diperoleh :
    ⇒ L = π.r2
    ⇒ L = π. K2
    (2π)2
    ⇒ L = πK2
    2
    ⇒ L = K2

    Karena pada soal keliling dinyatakan dalam x, maka persamaannya menjadi :
    ⇒ L(x) = x2

    Laju perubahan luas lingkaran terhadap kelilingnya sama dengan turunan dari fungsi luas L(x) terhadap kelilingnya (x). Jika laju perubahan dimisalkan v, maka :
    ⇒ v = d L
    dx
    ⇒ v = d (x2/4π)
    dx
    ⇒ v = d (1 x2)
    dx
    ⇒ v = 2x
    ⇒ v = x
    Jawaban : C 

  3. Jika jarak suatu titik dari suatu posisi P pada setiap waktu t diberikan sebagai s(t) = A sin 2t, A > 0, maka kecepatan terbesar diperoleh pada waktu t sama dengan .....
    1. k2 π, k = 0, 1, 2, 3, ....
    2. k2 π, k = 1, 3, 5, ....
    3. k2 π, k = 0, 2, 4, 6, ....
    4. kπ, k = ½ , 2½, 4½, ....
    5. kπ, k = 1½, 3½, 5½, ....

    Pembahasan :
    Ingat konsep dasar bahwa kecepatan merupakan turunan dari jarak terhadap waktu.
    Persamaan jarak :
    ⇒ s(t) = A sin 2t, A > 0

    Kecepatan :
    ⇒ v = ds
    dt
    ⇒ v = d (A sin 2t)
    dt
    ⇒ v = A cos 2t. 2
    ⇒ v = 2A cos 2t

    Karena persamaan kecepatannya bergantung pada cos 2t dan nilai tertinggi untuk cos adalah 1, maka kecepatan maksimum akan tercapai bila :
    ⇒ cos 2t = 1
    ⇒ 2t = ± n.2π
    ⇒ 2t = ± 2n π ; dengan n = 0, 1, 2, 3, ....

    Karena opsi pilihan dinyatakn dalam k, maka kita misalkan k = 2n.
    ⇒2t = ± k π ; dengan k = 0, 2, 4, 6, ....

    Dengan demikian, kecepatan terbesar diperoleh pada :
    ⇒2t = ± k π
    ⇒ t = k π  ; k = 0, 2, 4, 6, ....
    2
    Jawaban : C
PEMBAHASAN SOAL SBMPTN TURUNAN DIFFERENSIAL 1

PEMBAHASAN SOAL SBMPTN TURUNAN DIFFERENSIAL 1

  1. Suatu benda bergerak dengan persamaan gerak yang dinyatakan oleh :
    s(t) = ⅓t3 - 2t2 + 6r + 3
    Satuan jarak s(t) dinyatakan dalam meter dan waktu t dinyatakan dalam sekon.
    Apabila pada saat percepatan menjadi nol, maka kecepatan benda tersebut pada saat itu adalah ....
    A. 1 m/sD. 6 m/s
    B. 2 m/sE. 8 m/s
    C. 4 m/s

    Pembahasan :
    Konsep dasar yang perlu kita ingat ialah :
    • Jarak adalah integral dari kecepatan terhadap waktu
      s(t) = ∫ v dt

    • Kecepatan adalah turunan jarak terhadap waktu
      v(t) = ds
      dt

    • Kecepatan adalah integral dari percepatan terhadap waktu
      v(t) = ∫ a dt

    • Percepatan adalah turunan kecepatan terhadap waktu
      a(t) = dv
      dt

    • Percepatan adalah turunan kedua dari jarak terhadap waktu
      a(t) = d2s
      dt2

    Diketahui persamaan jarak :
    ⇒ s(t) = ⅓t3 - 2t2 + 6r + 3

    Persamaan kecepatan :
    ⇒ v(t) = ds
    dt
    ⇒ v(t) = d (⅓t3 - 2t2 + 6t + 3)
    dt
    ⇒ v(t) = t2 - 4t + 6

    Persamaan percepatan :
    ⇒ a(t) = dv
    dt
    ⇒ a(t) = d (t2 - 4t + 6)
    dt
    ⇒ a(t) = 2t - 4

    Percepatan benda akan bernilai nol pada saat :
    ⇒ 0 = 2t - 4
    ⇒ 2t = 4
    ⇒ t = 2 detik

    Karena percepatan bernilai nol pada detik kedua (t = 2), maka kecepatan benda menjadi :
    ⇒ v(t) = t2 - 4t + 6
    ⇒ v(t) = 22 - 4.2 + 6
    ⇒ v(t) = 4 - 8 + 6
    ⇒ v(t) = 2 m/s
    Jawaban : B

  2. Kurva y = (x2 + 2)2 memotong sumbu y di titik A. Persamaan garis singgung pada kurva tersebut di titik A adalah .....
    1. y = 8x + 4
    2. y = -8x + 4
    3. y = 4
    4. y = -12x + 4
    5. y = 12x + 4

    Pembahasan :
    Selain digunakan untuk menentukan persamaan suatu besaran turunan seperti kecepatan dan percepatan, konsep turunan juga dapat diaplikasikan untuk menentukan persamaan garis singgung. Dengan demikian, kita dapat menggunakan konsep turunan untuk menyelesaikan soal di atas.

    Titik potong pada sumbu koordinat :
    • Memotong sumbu y → berarti x = 0
    • Memotong sumbu x → berarti y = 0

    Pada soal, kurva memotong sumbu y pada titik A dengan x = 0 :
    ⇒ y = (x2 + 2)2
    ⇒ y = (02 + 2)2
    ⇒ y = 4
    Berarti titik A = (0,4)

    Persamaan gradien garis singgung ditentukan dengan konsep turunan :
    ⇒ m = dy
    dx
    ⇒ m = d (x2 + 2)2
    dx
    ⇒ m = 2 (x2 + 2). 2x
    ⇒ m = 4x (x2 + 2)

    Untuk x = 0, maka gradiennya :
    ⇒ m = 4x (x2 + 2)
    ⇒ m = 4.0 (02 + 2)
    ⇒ m = 0

    Untuk menentukan persamaan garis yang melalui satu titik dan gradien m, dapat kita gunakan rumus berikut :
    y − y1 = m (x − x1)

    Dengan x1 dan y1 titik yang diketahui.

    Berdasarkan rumus di atas, maka persamaan garis singgung pada titik (0,4) adalah :
    ⇒ y − y1 = m (x − x1)
    ⇒ y − 4 = 0 (x − 0)
    ⇒ y − 4 = 0
    ⇒ y = 4
    Jawaban : C

  3. Garis singgung pada kurva x2 - y + 2x - 3 = 0 yang tegak lurus pada garis x - 2y + 3 = 0 mempunyai persamaan .....
    1. y + 2x + 7 = 0
    2. y + 2x + 3 = 0
    3. y + 2x + 4 = 0
    4. y + 2x - 7 = 0
    5. y + 2x - 3 = 0

    Pembahasan :
    Hubungan gradien dua garis yang saling tegak lurus :
    m1.m2 = -1

    Dengan :
    m1 = gradien garis pertama
    m2 = gradien garis  kedua

    Gradien garis pertama diketahui :
    ⇒ x - 2y + 3 = 0
    ⇒ -2y = -x - 3
    ⇒ 2y = x + 3
    ⇒ y = ½x + 32
    ⇒ m1 = dy
    dx
    ⇒ m1 = d (½x + 32)
    dx
    ⇒ m1 = ½

    Gradien garis kedua :
    ⇒ m1.m2 = -1
    ⇒ ½ m2 = -1
    ⇒ m2 = -2

    Sekarang kita cari dulu persamaan gradien garis kedua (m2) berdasarkan kurvanya x2 - y + 2x - 3 = 0, yaitu :
    ⇒ x2 - y + 2x - 3 = 0
    ⇒ y = x2 + 2x - 3
    ⇒ m2 = dy
    dx
    ⇒ m2 = d (x2 + 2x - 3)
    dx
    ⇒ m2 = 2x + 2

    Selanjutnya kita harus mencari titik potong kurva terlebih dahulu. Untuk mencari titik potong, subsitusi nilai m2 ke persamaan gradiennya :
    ⇒ m2 = 2x + 2
    ⇒ -2 = 2x + 2
    ⇒ -2 - 2 = 2x
    ⇒ 2x = -4
    ⇒ x = -2

    Untuk x = -2, kita peroleh :
    ⇒ y = x2 + 2x - 3
    ⇒ y = (-2)2 + 2(-2) - 3
    ⇒ y = 4 - 4 - 3
    ⇒ y = -3
     Berarti titik potongnya = (-2,-3)

    Dengan demikian, persamaan garis singgungnya adalah :
    ⇒ y − y1 = m (x − x1)
    ⇒ y − (-3) = -2 (x − (-2))
    ⇒ y + 3 = -2 (x + 2)
    ⇒ y + 3 = -2x - 4
    ⇒ y + 2x + 3 + 4 = 0
    ⇒ y + 2x + 7 = 0
    Jawaban : A

KUMPULAN MODEL SOAL SBMPTN TENTANG TURUNAN

KUMPULAN MODEL SOAL SBMPTN TENTANG TURUNAN

  1. Pada selang -1 ≤ x ≤ 2, fungsi y = x3 - 3x2 + 3 mempunyai nilai maskimum sama dengan .....
    A. 8
    B. 6
    C. 3
    D. -1
    E. -6

  2. Garis singgung x + y = 2 menyinggung lingkaran x2 + y2 - 6x - 2y + q = 0 untuk q sama dengan .....
    A. 16D. 4
    B. 8E. -8
    C. 6

  3. Jarak dekat dari titik (5,1) ke kurva y = 2x2 adalah .....
    A. √19D. √14
    B. √17E. √13
    C. √15

  4. Persamaan garis singgung pada kurva :
    y = 2x + 1
    2 - 3x
    di titik (1,-3) adalah ....
    A. 7y + x + 20 = 0
    B. y + 7x - 10 = 0
    C. 7y - x + 20 = 0
    D. y - 7x + 10 = 0
    E. 7y - x - 20 = 0

  5. Jika x1 dan x2 merupakan akar-akar dari persamaan x2 + kx + k = 0, maka nilai k agar x13 + x23 mencapai nilai maksimum sama dengan .....
    A. 4D. -1
    B. 3E. -2
    C. 2

  6. Jika diketahui :
    f(x) = sin x - cos x
    sin x
    maka f '(⅓π) sama dengan ......
    A. 2D. ¼
    B. 1E. 1⅓
    C. ¾

  7. Diketahui kurva y = kx3 + 3x2 + mx + 6, dengan k dan m konstanta. Jika kurva tersebut mencapai minimum di x = -1 dan mencapai maksimum di titik (2,p), maka nilai p adalah ......
    A. 36D. 26
    B. 32E. 24
    C. 28

  8. Persamaan garis singgung pada kurva y = x2 + 2x - 1 yang sejajar dengan garis 6x + 3y - 1 = 2 adalah .....
    A. 8x + 4y - 5 = 0
    B. 4x + 2y - 5 = 0
    C. 4x + 2y + 5 = 0
    D. 2x + y - 5 = 0
    E. 2x + y + 5 = 0

  9. Fungsi :
    f(x) = x2 + 3
    x - 1
    turun untuk nilai x yang memnuhi ......
    A. -3 < x < 1 atau x > 1
    B. -1 < x < 1 atau 1 < x < 3
    C. x < -3 atau x > 1
    D. x < -1 atau x > 4
    E. -3 < x < -1

  10. Jika f(x) = a cos 2x + bx, f '(¼π) = -1, dan f '(½π) = 3, maka a + b sama dengan ......
    A. 8D. 5
    B. 7E. 4
    C. 6

  11. Garis singgung yang melalui titik dengan absis 2 pada kurva y = x3 + 5x - 17 adalah .....
    A. y = 17x - 37
    B. y = 17x - 36
    C. y = 17x - 35
    D. y = 17x - 34
    E. y = 17x - 33

  12. Nilai minimum relatif fungsi f(x) = x3 + 3x2 - 9x + 3 adalah .....
    A. 30D. -12
    B. 12E. -30
    C. -2

  13. Nilai maksimum dan nilai minimum mutlak dari kurva y = 2x3 - 9x2 + 12 x + 6 pada selang 0 ≤ x ≤ 2 berturut-turut adalah ....
    A. 12 dan 6D. 11 dan 5
    B. 12 dan 5E. 10 dan 6
    C. 11 dan 6

  14. Persamaan garis singgung di titik belok pada kurva y = x3 - 3x2 + 2x + 8 adalah .....
    A. x + y = 10
    B. x + y = 9
    C. x + y = 8
    D. x + y = 7
    E. x + y = 6

  15. Titik belok dari fungsi y = x3 - 3x2 + x + 5 adalah .....
    A. (0,5)D. (-1,5)
    B. (1,4)E. (-2,8)
    C. (2,3)