Tampilkan postingan dengan label LOGARITMA. Tampilkan semua postingan
Tampilkan postingan dengan label LOGARITMA. Tampilkan semua postingan
Pembahasan Soal SBMPTN Pertidaksamaan Logaritma 1

Pembahasan Soal SBMPTN Pertidaksamaan Logaritma 1

  1. Himpunan penyeleasaian pertidaksamaan 2 log (x - 2) ≤ log (2x - 1) adalah ....
    1. {x| -1 ≤ x ≤ 5}
    2. {x| 2 < x ≤ 5}
    3. {x| -2 < x ≤ 3 atau x ≥ 5}
    4. {x| x ≥ 5}
    5. {x| 2 < x ≤ 5/2}

    Pembahasan :
    ⇒ 2 log (x - 2) ≤ log (2x - 1)
    ⇒ log (x - 2)2 ≤ log (2x - 1)

    Syarat utama yang harus kita perhatikan adalah syarat berdasarkan prinsip logaritma. Sesuai dengan konsep dasar logaritma, bilangan yang dilogaritmakan harus lebih besar dari nol. Dengan demikian kita harus tinjau syarat yang berlaku pada bilangan yang dilogaritmakan terlebih dahulu yaitu (x - 2) dan (2x - 1).

    Untuk log (x - 2)
    ⇒ x - 2 > 0
    ⇒ x > 2

    Untuk log (2x - 1)
    ⇒ 2x - 1 > 0
    ⇒ 2x > 1
    ⇒ x > ½

    Berdasarkan dua syarat tersebut, maka nilai x yang memenuhi pertidaksamaan tersebut salah satunya adalah x > 2.

    Selanjutnya, kita tinjau penyelesaian untuk pertidaksamaan tersebut.
    ⇒ log (x - 2)2 ≤ log (2x - 1)
    ⇒ (x - 2)2 ≤ (2x - 1)
    ⇒ x2 - 4x + 4 ≤ 2x - 1
    ⇒ x2 - 4x + 4 - 2x + 1 ≤ 0
    ⇒ x2 - 6x + 5 ≤ 0
    ⇒ (x - 5)(x - 1) ≤ 0
    ⇒ x = 5 atau x = 1

    Untuk melihat penyelesaian pertidaksamaannya, maka kita dapat menggunakan garis bilangan dan nilai uji. Karena nilai x patokan (pembuat nol) adalah 5 dan 1, maka kita dapat gunakan nilai uji x = 0, x = 3, dan x = 6.
    Nilai ujiSubstitusiHasil
    x = 0(0 - 5)(0 - 1) = 5> 0
    x = 3(3 - 5)(3 - 1) = -4< 0
    x = 6(6 - 5)(6 - 1) = 5> 0

    Karena yang kita cari adalah pertidaksamaan kurang dari sama dengan (≤), maka nilai uji yang memenuhi adalah nilai uji yang menghasilkan nilai negatif atau kurang dari nol. Dengan demikian, himpunan penyelesaiannya terletak di antara 1 dan 5.
    ⇒ HP = {x| 1 ≤ x ≤ 5}

    Karena syarat utama berdasarkan konsep logaritma adalah x > 2, maka himpunan penyelesaian untuk pertidaksamaan logaritma tersebut adalah :
    ⇒ HP = {x| 2 < x ≤ 5}
    Jawaban : B
  1. Himpunan penyelesaian pertidaksamaan log (x + 3) + 2 log 2 > log x2 adalah ....
    1. {x| -3 < x < 0}
    2. {x| -2 < x < 0}∪{x| 0 < x < 6}
    3. {x| -2 < x < 6}
    4. {x| -3 < x < -2}∪{x| x < 6}
    5. {x| x < -2}∪{x| x > 6}

    Pembahasan :
    Sama seperti soal nomor 1, kita harus melihat syarat utama logaritma dari soal tersebut.

    Untuk log (x + 3)
    ⇒ x + 3 > 0
    ⇒ x > -3

    Untuk log x2
    ⇒ x2 > 0
    ⇒ x ≠ 0

    Selanjutnya kita cari penyelesaian pertidaksamaan :
    ⇒ log (x + 3) + 2 log 2 > log x2
    ⇒ log (x + 3) + log 22 > log x2
    ⇒ log (x + 3) + log 4 > log x2
    ⇒ log 4(x + 3) > log x2
    ⇒ 4(x + 3) > x2
    ⇒ x2 - 4(x + 3) < 0
    ⇒ x2 - 4x - 12 < 0
    ⇒ (x - 6)(x + 2) < 0
    ⇒ x = 6 atau x = -2

    Untuk pertidaksamaannya, maka gunakan nilai uji atau garis bilangan. Karena nilai x pembuat nol adalah -2 dan 6, maka nilai uji yang dapat kita gunakan antara lain x = -3, x = 0, dan x = 7.
    Nilai ujiSubstitusiHasil
    x = -3(-3 - 6)(-3 + 2) = 9> 0
    x = 0(0 - 6)(0 + 2) = -12< 0
    x = 7(7 - 6)(7 + 2) = 9> 0

    Karena yang kita cari adalah pertidaksamaan kurang dari (<), maka nilai uji yang memenuhi adalah nilai uji yang menghasilkan nilai negatif atau kurang dari nol. Dengan demikian, himpunan penyelesaiannya terletak di antara -2 dan 6.
    ⇒ HP = {x| -2 < x < 6}

    Karena syarat logaritma x > -3 dan x ≠ 0, maka kita harus melihat penyelesaian gabungan dari syarat-syarat yang telah kita peroleh. Irisan dari ketiga penyelesaian tersebut adalah :
    ⇒ HP = {x| -2 < x < 0}∪{x| 0 < x < 6}
    Jawaban : B

PEMBAHASAN SOAL SBMPTN PERSAMAAN DAN FUNGSI LOGARITMA 3

  1. Jika diketahui persamaan logaritma xlog 2 + xlog (3x - 4) = 2 mempunyai dua penyelesaian yaitu x1 dan x2, maka hasil kali akar-akarnya adalah ....
    A. x1.x2 = 8
    B. x1.x2 = 6
    C. x1.x2 = 4
    D. x1.x2 = 3
    E. x1.x2 = 2

    Pembahasan :
    Sifat logaritma yang kita gunakan untuk soal ini adalah :
    alog b + alog c = alog(b.c)
    alog ab = b

    Dengan menggunakan sifat logaritma tersebut, maka bentuk persamaan logaritma pada soal dapat kita sederhanakan menjadi :
    xlog 2 + xlog (3x - 4) = 2
    xlog {2(3x - 4)} = 2
    xlog (6x - 8) = xlog x2
    ⇒ 6x - 8 = x2
    ⇒ x2 - 6x + 8 = 0

    Bentuk sederhana di atas merupakan bentuk persamaan kuadrat yang memiliki akar-akar x1 dan x2. Hasil kali akar-akar suatu persamaan kuadrat dapat kita tentukan dengan mencari akar-akarnya terlebih dahulu atau dengan menggunakan rumus berikut :
    x1 . x2 = ca

    Dari persamaan kuadrat yang kita peroleh, diketahui :
    ⇒ x2 - 6x + 8 = 0
    ⇒ a = 1; b = -6; c = 8.

    Dengan demikian, hasil kali akar-akarnya adalah :
    ⇒ x1 . x2 = ca
    ⇒ x1 . x2 = 81
    ⇒ x1 . x2 = 8
    Jawaban : A

  2. Grafik fungsi y = log x2 adalah ....

    pembahasan soal sbmptn grafik logaritma

    Pembahasan :
    Berikut sifat logaritma yang dapat kita gunakan :
    alog b2 = 2. alog |b|

    Berdasarkan sifat di atas, fungsi soal dapat kita ubah menjadi :
    ⇒ y = log x2
    ⇒ y = 2 log |x|

    Karena basis logaritmanya 10, kita bisa menentukan beberapa titik bantu, yaitu :
    Untuk x = 1 dan x = -1
    ⇒ y = 2 log |x|
    ⇒ y = 2 log 1
    ⇒ y = 2 log 100
    ⇒ y = 2 (0)
    ⇒ y = 0
    Titik (1, 0) dan (-1,0)

    Untuk x = 10 dan x = -10
    ⇒ y = 2 log |x|
    ⇒ y = 2 log 10
    ⇒ y = 2 (1)
    ⇒ y = 2
    Titik (10, 2) dan (-10,2)

    Dengan menghubungkan titik-titik bantu tersebut (seperti grafik eksponen), maka grafik fungsi y = log x2 kurang lebih seperti gambar di bawah ini.
    grafik fungsi logaritma
      Jawaban : E

  3. Jika 81log 1x = xlog 1y = ylog 181, maka 2x - 3y sama dengan ....
    A. -162D. 81
    B. -81E. 162
    C. 0

    Pembahasan :
    Sifat logaritma yang kita gunakan :
    alog b . blog c . clog d = alog d

    Karena ketiga bentuk logaritma bernilai sama, maka misalkan nilainya sama dengan p. Selanjutnya kita gunakan sifat perkalian logaritma di atas untuk menentukan nilai p.
    ⇒  81log 1x . xlog 1y . ylog 181 = p.p.p
    ⇒  81log 1x . xlog 1y . ylog 181 = p3
    ⇒  81log x-1. xlog y-1 . ylog (81)-1 = p3
    ⇒ (-1)81log x . (-1)xlog y . (-1)ylog 81 = p3
    ⇒ (-1)3 (81log x . xlog y . ylog 81) = p3
    ⇒ (-1) 81log 81 = p3
    ⇒ -1 = p3
    ⇒ p = -1

    Karena pada soal ditanya nilai 2x - 3y, maka kita harus mencari nilai x dan y terlebih dahulu.
    Menentukan nilai x :
    81log 1x = p
    81log 1x = -1
    81log x-1 = 81log (81)-1
    ⇒ x-1 = (81)-1
    ⇒ x = 81

    Menentukan nilai y :
    ylog 181 = p
    ylog 181 = -1
    ylog (81)-1 = ylog y-1
    ⇒ (81)-1 = y-1
    ⇒ y = 81

    Dengan demikian, kita peroleh :
    ⇒ 2x - 3y = 2(81) - 3(81)
    ⇒ 2x - 3y = 162 - 243
    ⇒ 2x - 3y = -81
    Jawaban : B
PEMBAHASAN SOAL SBMPTN LOGARITMA 2

PEMBAHASAN SOAL SBMPTN LOGARITMA 2

  1. Himpunan penyelesaian dari pertidaksamaan 3log x + 3log (2x - 3) < 3 adalah .....
    A. {x| x > 32}
    B. {x| x > 92}
    C. {x| 0 < x < 92}
    D. {x| 32 < x < 92}
    E. {x| -3 < x < 92}

    Pembahasan :
    Syarat agar pertidaksamaan di atas terpenuhi adalah :
    • x > 0
    • 2x - 3 > 0

    Karena 2x - 3 > 0, maka :
    ⇒ 2x - 3 > 0
    ⇒ x > 32 (memenuhi)

    Prinsip logaritma yang kita gunakan untuk menyelesaikan soal ini :
    alog b + alog c = alog (b.c)

    Selanjutnya, dengan menggunakan prinsip logaritma, bentuk pertidaksamaan di atas dapat disederhanakan dan diubah menjadi bentuk persamaan kuadrat sebagai berikut :
    3log x + 3log (2x - 3) < 3
    3log {x(2x - 3)} < 3log 33
    3log {x(2x - 3)} < 3log 27
    ⇒ x(2x - 3) < 27
    ⇒ 2x2 - 3x < 27
    ⇒ 2x2 - 3x - 27 = 0
    ⇒ (2x - 9)(x + 3) < 0

    Nilai x yang memenuhi pertidaksamaan di atas dapat diuji dengan menggunakan garis bilangan. Karena kurang dari nol (negatif), maka diperoleh nilai x :
    ⇒ -3 < x < 92

    Karena sebelumnya kita sudah memperoleh nilai x yang memenuhi berdasarkan syarat, yaitu x > 32, maka himpunan penyelesaian pertidaksamaan 3log x + 3log (2x - 3) < 3 adalah :
    ⇒ HP = {x| 32 < x < 92}
    Jawaban : D

  2. Diketahui persamaan sebagai berikut :
    10(x2 - x - 12)log(x2 - x - 12) = (x - 4)2(x + 3)2
    Jumlah semua akar persamaan tersebut adalah .....
    A. -2D. 1
    B. -1E. 2
    C. 0

    Pembahasan :
    Untuk menyelesaiakn soal di atas, berikut prinsip-prinsip logaritma yang dapat kita gunakan :
    alog (b.c) = alog b + alog c
    alog bm = m alog b

    Berdasarkan prinsip tersebut kita peroleh :
    ⇒ 10(x2 - x - 12)log(x2 - x - 12) = (x - 4)2(x + 3)2
    ⇒ log {10.(x2 - x - 12)log(x2 - x - 12)} =  log (x - 4)2(x + 3)2

    Gunakan rumus nomor 1 untuk menyederhanakan ruas kiri :
    ⇒ log 10 + log (x2 - x - 12)log(x2 - x - 12) =  log {(x - 4)(x + 3)}2
    ⇒ 1 + log (x2 - x - 12)log(x2 - x - 12) =  log (x2 - x - 12)2

    Gunakan rumus nomor 2 untuk menyederhanakan kedua ruas :
    ⇒ 1 + log (x2 - x - 12).log (x2 - x - 12) = 2 log (x2 - x - 12)
    ⇒ 1 + {log (x2 - x - 12)}2 - 2 log (x2 - x - 12) = 0
    ⇒ 1 + log2 (x2 - x - 12) - 2 log (x2 - x - 12) = 0
    ⇒ log2 (x2 - x - 12) - 2 log (x2 - x - 12) + 1 = 0

    Perhatikan persamaan di atas! persamaan tersebut sudah berbentuk persamaan kuadrat. Untuk mempermudah perhitungan, kita misalkan :
    ⇒ log (x2 - x - 12) = p

    Maka persamaannya menjadi :
    ⇒ p2 - 2p + 1 = 0
    ⇒ (p - 1)(p - 1) 0
    ⇒ p1 = 1 dan p2 = 1

    Karena p ada dua, maka akar-akar persamaan logaritma akan ada 4 yaitu x1, x2, x3 dan x4. Untuk mengetahui jumlah akar-akarnya, kembalikan pemisalan ke bentuk semula :
    Untuk p1 = 1
    ⇒ log (x2 - x - 12) = 1
    ⇒ log (x2 - x - 12) = log 10
    ⇒ x2 - x - 12 = 10
    ⇒ x2 - x - 22 =  0 ; diperoleh x1 dan x2.
    Diketahui : a = 1, b = -1, c = -22.

    Jumlah x1 dan x2 :
    ⇒ x1 + x2-ba
    ⇒ x1 + x2 = 11
    ⇒ x1 + x2 = 1

    Untuk p2 = 1, dengan cara yang sama seperti di atas, akan diperoleh x3 dan x4 dengan jumlah yang sama yaitu 1. Dengan demikian, jumlah seluruh akarnya adalah :
    ⇒ x1 + x2 + x3 + x4 = 1 + 1
    ⇒ x1 + x2 + x3 + x4 = 2
    Jawaban : E

  3. Diketahui 2 (4log x)2 - 2 4log √x = 1. Jika akar-akar persamaan di atas adalah x1 dan x2 maka x1 + x2 sama dengan .....
    A. 5D. 52
    B. 92E. 94
    C. 174

    Pembahasan :
    ⇒ 2 (4log x)2 - 2 4log √x = 1
    ⇒ 2 (4log x)2 - 4log (√x)2 = 1
    ⇒ 2 (4log x)2 - 4log x = 1
    ⇒ 2 (4log x)2 - 4log x - 1 = 0

    Misalkan 4log x = p, maka :
    ⇒ 2p2 - p - 1 = 0
    ⇒ (2p + 1)(p - 1) = 0
    ⇒ p = -½ atau p = 1

    Untuk p = -½, diperoleh :
    4log x = -½
    ⇒  4log x = 4log 4
    4log x = 4log 4
    ⇒ x = 4
    ⇒ x = 1
    4½
    ⇒ x = 1
    4
    ⇒ x1 = ½

    Untuk p = 1, diperoleh :
    4log x = 1
    ⇒  4log x = 4log 41
    4log x = 4log 41
    ⇒ x = 41
    ⇒ x2 = 4

    Dengan demikian, jumlah akar-akarnya adalah :
    ⇒ x1 + x2 = ½ + 4
    ⇒ x1 + x2 = 92
    Jawaban : B

PEMBAHASAN SOAL SBMPTN LOGARITMA 1

PEMBAHASAN SOAL SBMPTN LOGARITMA 1

  1. Nilai x yang memenuhi persamaan : 2log 2log (2x+1 + 3) = 1 + 2log x adalah ....
    A. log ⅔
    B. 2log 3
    C. 3log 2
    D. -1 atau 3
    E. 8 atau ½

    Pembahasan :
    2log 2log (2x+1 + 3) = 1 + 2log x
    2log 2log (2x+1 + 3) = 2log 2 + 2log x
    2log 2log (2x+1 + 3) = 2log 2x
    2log (2x+1 + 3) = 2x
    2log (2x+1 + 3) = 2log 22x
    ⇒ 2x+1 + 3 = 22x
    ⇒ 2x.21 + 3 = (2x)2
    ⇒ 0 = (2x)2 - 2.2x - 3
    ⇒ (2x)2 - 2.2x - 3 = 0

    Perhatikan bentuk di atas! Persamaan tersebut merupakan persamaan kuadrat. Untuk mempermudah, misalkan 2x = p sehingga persamaannya menjadi :
    ⇒ p2 - 2p - 3 = 0
    ⇒ (p + 1)(p - 3) = 0
    ⇒ p = -1 atau p = 3

    Substitusi nilai p untuk memperoleh nilai x.
    Untuk p = -1
    ⇒ 2x = p
    ⇒ 2x = -1
    ⇒ x = 2log -1

    Untuk p = 3
    ⇒ 2x = p
    ⇒ 2x = 3
    ⇒ x = 2log 3
    Jadi, nilai x yang memenuhi adalah 2log 3.
    Jawaban : B

  2. Jika diketahui persamaan logaritma berikut ini :
    2log a  = m
    3log b
    3log a  = n
    2log b
    Dengan a > 1 dan b > 1, maka nilai mn adalah ....
    A. 2log 3D. (3log 2)2
    B. 3log 2E. (2log 3)2
    C. 4log 9

    Pembahasan :
    m  = 2log a 3log b
    n3log a 2log b
    m  = 2log a  . 2log b
    n3log b3log a
    m  = 2log a 2log b
    n3log a 3log b

    Ingat kembali rumus logaritma berikut :
    alog b = 1
    blog a

    Dengan menggunakan rumus tersebut, maka bentuk persamaan yang kita peroleh di atas, dapat disederhankan menjadi :
    mn = (2log a. alog 3).(2log b. blog 3)
    mn = 2log 3. 2log 3
    mn = (2log 3)2
    Jawaban : E

  3. Jika 2log x + 4log √y = 4log z2, maka nilai z2 sama dengan ....
    A. x√yD. √xy
    B. x2yE. √y
    C. xy

    Pembahasan :
    Ingat kembali rumus logaritma berikut :
    alog b = a2log b2

    Dengan rumus di atas, maka persamaan di soal dapat diubah :
    2log x + 4log √y = 4log z2
    22log x2 + 4log √y = 4log z2
    4log x2 + 4log √y = 4log z2
    4log x2.√y = 4log z2
    ⇒ x2.√y = z2
    Jadi, nilai z2 = x2.√y.
    Jawaban : B

  4. Perhatikan bentuk pembagian berikut :
    3 + log (log x)  = ......
    3 log (log x1000)

    Nilai dari bentuk di atas adalah .....
    A. 1 + 1
    log (log x)
    B.  1  + 1
    3001000 log (log x)
    C.  1  + 1
    3100 log (log x)
    D. 1⅓
    E. ⅓

    Pembahasan :
    3 + log (log x)  = log 1000 + log (log x)
    3 log (log x1000)3 log (1000 log x)
    3 + log (log x)  = log (1000 log x)
    3 log (log x1000)3 log (1000 log x)
    3 + log (log x)  = 1
    3 log (log x1000)3
    Jawaban : E